4-2.Quadratic Equations and Inequations
hard

माना द्विघात समीकरण  $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है

A

$\frac{1}{{1 - \cos \,\theta }} - \frac{1}{{1 + \sin \,\theta \,}}$

B

$\frac{1}{{1 + \cos \,\theta }} + \frac{1}{{1 - \sin \,\theta \,}}$

C

$\frac{1}{{1 - \cos \,\theta }} + \frac{1}{{1 + \sin \,\theta \,}}$

D

$\frac{1}{{1 + \cos \,\theta }} - \frac{1}{{1 - \sin \,\theta \,}}$

(JEE MAIN-2019)

Solution

Using quadratic formula,

$x=\frac{(\cos \theta \sin \theta+1) \pm \sqrt{(\cos \theta \sin \theta+1)^{2}-4 \sin \theta \cos \theta}}{2 \sin \theta}$

$=\frac{(\cos \theta \sin \theta+1)^{2} \pm(\cos \theta \sin \theta-1)}{2 \sin \theta}$

$ = \cos \,\theta ,\,\cos ec\,\theta $

$\alpha  = \cos \,\theta ,\,\beta  = \cos ec\,\theta $

$\therefore \,\sum\limits_{n = 0}^\infty  {{\alpha ^n}}  + \frac{{{{( – 1)}^n}}}{{{\beta ^n}}}$

$ = \sum\limits_{n = 0}^\infty  {{{(\cos ec)}^n}}  + \sum\limits_{n = 0}^\infty  {{{( – \sin \theta )}^n}} $

$=\frac{1}{1-\cos \theta}+\frac{1}{1+\sin \theta}$

$\therefore $ $(C)$ is the correct

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.